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ASYMPTOTIC THEORY OF THE UNBALANCED IONIZATION LAYER NEAR A 
CATALYTIC WALL IN PLASMA OF MOLECULAR GASES* 

M. S. BENILOV and G. A. TIRSKII 

The statement and asymptotic solution of the problem of deviation from ionization 

equilibrium in a moderately ionized gas near a perfect catalytic wall was previous- 

ly considered in /l/ in the case when atoms are ionized by an electric shock and 

intheion-electron recombination an electron participates as the third body. A 

different case of chemical kinetics is considered here in which atom ionization by 

collision with neutral molecules andtheion-electron recombination with neutral 

molecules as the third body play an important part besides reactions and recombina- 

tions of the indicated type. 

1. Statement of the problem. Let us consider a moderately ionized multicomponent 

gas consisting of M neutral ccmponents , positive single-charge ions of atoms of one of the 

neutral components (easily ionizable additives), and electrons. The additive atoms are 
ionized by collision with electrons, as well as with molecules of one of the neutral compon- 

ents (below called component I); electrons or molecules of the first component may particip- 

ate in the ion-electron recombinations as the third body. For simplicity of exposition we 

assume that the gas as a whole is at rest and its pressure constant; that in the considered 

temperature range the dependence of all binary diffusion coefficients Dj,. where subscript 

j relates to ions or electrons and k to any of the neutral components of the mixture, is 

the same. The distribution of charges and variation of molar concentration of neutral com- 

ponents throughout the gas volume is assumed negligible, and the gas temperature is assumed 

to be a known monotonically increasing function of the y-coordinate (the y-axis is direct- 

ed along the normal to the wall). 

On the above assumpticns the distribution of the quasineutral molar concentration of 

charged particles 5, in the presence of electric current as well as in its absence, is de- 

fined by the equaticn of ambipolar diffusion /2/. For the considered here model that equat- 

ion and boundary conditions are of the form 

(d / dy) (nDdx / dy) = n3 (k,,x + k,.,x,) (x” - xf) , y = 0, 5 = 0; y -+ 00, x--f zr, 

D = 2DiD, (Di + D,)-‘, D;‘=tzlx,n;,’ (j==i,e), x, = n,,n-’ 

where n is the over-all numerical concentration of particles in the mixture, k,, and k,l are 

components of the recombination rate for reactions in which the part of the third body is 

played by electrons and first component molecules, respectively, xk is the molar concentration 

of the k-th neutral component, and ner is the local chemically stable concentration of charged 

particles. The subscript 00 denotes here and subsequently the quantities in the unperturbed 

region away from the wall. 
We convert the problem to dimensionless variables n = y I L, 2 = 5 lx,,, where L is a 

characteristic scale of temperature variation. We have 

x (a~')' = b (1 + cz) (z2 - P), q=o,z=o;q+oo,z+1 (1.1) 

f3 = f.3 (q) = T / T,, t = mq, m=I/(2kT,),9-(l-O)/8 

where n, is the concentration of first component molecules, T is the temperature of gas, I is 
the potential of ionization of the additive atoms, k is the Boltzmann constant, and the 

prime denotes differentiation with respect to n. The quantity cl1 has the meaning of the 

local recombination length for recombination reactions with participation of the first com- 

ponent molecules. We also introduce the over-all recombination length by formula 

*Prikl.Matem.Mekhan.,44,No.5,839-846,198O 

592 



Asymptotic theory of the unbalanced ionization layer 

I 

I,'? 

593 

The function c(q) defines the ratio of reaction rate with electron participation to that 

with a neutral molecule. 

In the case of plasma of combustion products with alcaline additive at T,=2700K, 1 atm 

pressure, 1% molar concentration of the additive (potassium), 18% molar concentration of the 

first component (water molecules), and taking the expressions for k,. and krl from the paper 

by A. Kh. Mnatsakanian and G. V. Haidus, Ionization of atoms and recombination of atomic ions 

and electrons in unsteady atomic-molecular plasma. Preprint No. l-43 of the Inst. of High 

Temperatures, Akad.Nauk, SSSR, Moscow, 1979, we obtain c-=0.7. Note that according to that 

publication it is generally possible to assume in this case the temperature function c as 

being approximately constant. 

In the particular case of constant temperature of gas a= b =rz 1; and c= const 

problem (1.1) has the exact solution 

z = z (?j [(c + 1) / (2x)3”‘, c} 

z (u, u) = (Y” - FYV - IOv - 3v + 1) (v' + 6vv + 2v - 3v + I)-’ 

Y = {[3 (u + 1) (3v f @I'/? + 5 + 3v) ezu 
For the molar concentration of charged particles and the molar concentration derivative 

at the wall (the quantity that determines the limit flux of particles to the wall), represent- 

ed in initial variables, we obtain 

(1.2) 

where, and subsequently, the subscript w indicates quantities at the wall. 

The dependence of 7 on u in the case of v=o and v = 2 is shown in Fig.1, where the 

dash line is the curve of function thu which is the limit form of function T(U,V) at high 

values of parameter V. 
For the derivation of the approximate analytic solution of problem (1.1) in the general 

case of variable gas temperature we use the asymptotic method proposed in /l/. 

2. The hot wall limit (x+0). The external asymptotic expansion of the solution 

of problem (1.1) is of the form 

2 (11; X) = r (rl) + ..* 

and the internal expansion of the form 

z(9;x)=z1(*rlJ+**.; Q=rllf/x 

For function z1 we have the boundary value problem 

u,&, / drh2 = b, (1 + c,z,) (z12 - rw2), qI = 0, z1 = 0; ql + 00, z1 + r, 

whose solution in input variables yields 

(2.1) 

for the molar concentration of charged particles in an unsteady layer and for the molar con- 

centration derivative at the wall. 

3. The cold wall limit (x+0, m-1+O). We introduce the parameter of comparison 

y = v(x) which is the root of equation y = x lney. It can be shown that 

y = x In2 x II + 0 (In In x-i/ In x-i)] 

We establish between the small parameters x and m-l the following relation of order: 

m / In y-1 --t k,, where k, is a specified positive constant. 
The external expansion of problem (1.1) is associated with the limit x-to, m-'-to 

and fixed 11. It is of the form 

z (1; x, m) = r 11 + a (2Wb)-’ (k,q’)* exp (~WJ - In y-l) + . ..I (3.1) 

Note that in the indicated passing to limit, function r = r(q;m) tends to vanish, hence 

in calculating the second term of expansion (3.1) ionization by electron impact and the re- 
combination with the electron as the third body was neglected since it is low in comparison 

with ionization resulting from collisions with neutral molecules and recombination with the 

molecules as the third body. In the external part of the perturbed region, where r = 0 (I), 
it is, evidently, not possible to neglect ionization by electron impact, and expansion (3.1) 
is generally valid only in the first approximation. The expansion valid in the external 

part of the perturbed region in subsequent approximations is associated with the limit 
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x-0, m-‘-+0 and fixed rlz = nq (11) - 
From the physical point of view the latter expansion is valid in the region where the 

gas temperature is still little different from that in the unperturbed zone, and the local 
chemically stable concentration of charged particles is of the same order of magnitude as the 
unperturbed concentration. In that region ionization and recombination reactions of both 
types take place. Expansion (3.1) in the inner part of the chemically stable region where 
r <i and the reactions with electron participation are of minor importance, as compared 
to reactions with the participation of molecules. 

The form of solution of the problem in the unsteady layer region substantially depends 
on the quantity klq,. Let us consider three cases. 

3.1. k,q, < 1. The expansion for the unsteady layer is of the form 

z (q; x, m) = exp (-mq,) z3 h3) + . . .; q3 = q In y-’ exp I@ y-’ - mk,) / 21 

and for function 23 we have the problem 

a,daz3/d~32 = b, (zs2 - em’/*) ( ?13 = 0, zg = 0; Tj3 -+ m, z3 -+ El,‘/4 

Using the solution of this problem we obtain in initial variables 

3.2. k,q, = 1. We introduce the parameter f(x,m) = lny-'- mp, and consider three 

3.2.1. f+ 00. This case is similar to that of k,q, -=z 1 , and all formulas derived 
Case 3.1 apply here. 

3.2.2. f-+k,. (b is some specified constant). Expansion for the unsteady layer is 
the form 

z(n; x, m) = exP (--mq,) zk (%) + . . . . q4 = q In y-l 

and for function zI we obtain the equation 

exp (-&) a#z, / dnr2 = b,,, Iz~'-- O,,,':? exp (-2k,q,,'nr)l 

(3.2) 

cases. 

in 

of 

We introduce the auxilliary function a proFortiona1 to the ratio of local recombination 
length for the recombination reaction with molecule participation to the characteristic scale 
of variation of function t 

and the new variables 

For function zs(n6) we obtain the problem 

d=z,i dn5z = zS2 - exp (2qa) (3.3) 

qs = -2 In CL,,, zg = 0; n8- mY zg - exp ns + l/z + . . . (3.4) 

The curve of function zs(ns) obtained by numerical solution of the nonlinear boundary 
value problem (3.3), (3.4) is shown in Fig.2 for several values of parameter a, (lna,, = 5; 3; 
1; --I), where the dash line represents the asymptotics of function zg determined by the 
second of expressions (3.4) as n5+m. 

For the molar concentration of charged particles in the unsteady layer and for the molar 
concentration derivative at the wall we have in initial variables 

z = x,,u,~z~ [(-dt / dy), y - 2 In cc,], (do / dy), = 1/2a,3~&w! d,,; $1 = (dz, i dn& (3.5) 

The curve of function $1 =$1 (%J) is shown in Fig.2, where the dash lines relate to 
functions determined by the asymptotic expressions at high and low values of parameter aU 
which are of the form 

a,+ 0, $1 = 2 / (V%Z,,,~); a, + 00, $1 = R ln-'cw. R = [(f/(7/ 2) and (0; O,-6)P 2 4.134 

where (s;g,,g,) is an elliptic integral of the first kind in the standard Weierstrass form /3/. 
3.2.3. f-t-co. In this case the chemically unstable layer region is inhomogeneous, 

consisting of a transition and a recombination layers, each with its own asymptotic expansion. 
Expansion for the transition layer is of the form 

2 (q; X, n) = yza (no) + . . . . q6 = h - 6) In Y-’ 
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Fig.1 
Fig.2 

where 6 is the root of the algebraic equation a(8) = 1. It can be shown that 6 = O(f/m) = o(1). 
After the substitution of variables 

n6 = r)7 1 (--krqw')r ze = z+~(&w')zl b, 

Eq. (1.1) assumes the canonical form (3.3), where subscript 7 is substituted for 5. As 

Q-+00 the boundary condition for this equation coincides with the boundary condition (3.4); 

the second boundary condition is that of damping of function 2, as Q-+-m 

Q-+--m, z,+O; %-+W, z, N exp n7 + l/z + . . . 

The dash-dot line in Fig.2 represents the curve of function z,(n,) calculated by the 
exact numerical solution of the considered problem. 

For the subsequent merging 
T),+-CO. It can be shown that 

For the molar concentration 
initial variables 

it is necessary to know the asymptotics of function ~7 as 
it is of the form 

z7 - 6 / $ + . . . 

of charged particles in the transition layer we have in 

5 = %Z?I r/ 2 (Y - !/a) / &I (3.6) 

where subscript 6 denotes quantities for T) = 6. 
The expansion for the recombination layer is related to the limit x+ 0, m-l + 0 and 

fixed nz = 11/6<1. It is of the form 

z (tl; x9 m) = X~-~ZS (Q) + . . . 
For function z8 we obtain the boundary value problem 

a,dtz8 / dqs2 = b,,,zg2, ‘18 = 0, zg = 0; rls --t 1, za - 6a,b,-’ (1 - Q)-~ + . . . (3.7) 

Using the solution of this problem in initia 
elliptic Weierstrass function /3/ 

variables we find that (pe(u;gz,g,) is an 

2 

s=.r,a$-2pe 
2 Yb-Y 

--;O,-_6R" , &4fi+% 
v's yb 10 b 

(3.8) 

3.3. k,qw > 1. This limit case is qualitatively similar to the previous one, except 
that in this case the recombination layer is no longer asymptotically thin. 

The direct expansion (3.1) is valid in this case for n>q,, where ns denotes the root 
of the algebraic equation k,q(qs) = 1. It is important to note that parameter nS, unlike 
the introduced below parameter nsl, is independent of the small parameters x and m-l. 

The expansion for the transition layer is of the form 

z (11; x. 4 = yza (119) + . . .; rl9 = (11 - q,J In y-r 

where nS1 denotes the root of the algebraic equation a(nsl) = 1. Note that %I = 11s + fJ (1). 
For function zy we obtain a problem similar to that for function z7. Hence for the charg- 
ed particle concentration in the transition layer we have in initial variables again formula 
(3.6) in which subscript ~1 is substituted for subscript 6 (here and below subscripts s 
and zl denote quantities for n=~ and n = %l r respectively). 

The expansion for the recombination layer is of the form 
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and for function zaO we obtain the boundary value problem 

(d / dn) (adz,,, / olq) = b~,,~, '1 = 0; zn, = 0; n + qs, 2x0 - 6a,b,-’ (Q - I)+ + . . . (3.9) 

This problem has generally no analytic solution and must be solved numerically. 

4. Discussion of results. One of the basic conclusions cf this investigation is 
that the physical picture of deviation from ionization equilibrium near a perfectly catalytic 
wall, presented in /l/ for the case of ionization by electron impact and recombination only 
with electrons as the third body, remains essentially the same also in the considered here 
case of chemical kinetics. This indicates a definite generality of the above picture. 

The derived solutions show that in the case of a cold wall ionization and recombination 
with ion participation does not affect the first approximation solution of the problem. 
This is easily explained , since in the chemical equilibrium region the specific reaction 
mechanism does not affect the first approximation solution, while in the unsteady layer 
region the electron concentration when the wall is cold, is low and reactions with their 
participation are of minor importance in comparison with reactions with neutral molecule 
participation (it is assumed that in the unperturbed region the reaction rates of both types 
are comparable and of order unity). On the other hand, when in the unperturbed region the 
rate of reactions with electron participation considerably exceeds that of reactions with 
molecule participation, i.e. when Cz>i, this conclusion is not generally valid. In such 
cases it is necessary to introduce in the problem asymptotic formulation a small parameter 
linked to the quantity c-1. 

The asymptotic solutions obtained above for various limit cases, using the respective 
passing to.limit,are in agreement. In particular, the second of formulas (2.1) as TV- i 
and r,-tO are in agreement with the second formulas (1.2) and (3.21, formula (3.5) is in 
agreement, as or,.+0 , and Q-LW , with the second of formulas (3.2) and (3.8), and as 
~_*O,problem (3.9) becomes identical with problem (3.7). 

These results enable us to formulate the following method for determining the molar 
concentration derivative of charged particles at the wall as indicated above, this quantity 
determines the limit particle flux to the wall) for specific conditions. First, we calculate 
parameter a,. If a,<%, we use the second of formulas (2.11, and if alll- O(f), formula (3.5). 
If u,~>I. we determine the unsteady layer "thickness" ysl; if variation of quantities nU 
and k,,n3 over that thickness is small, it is possible to use the seoond of formulas (3.8), 
otherwise problem (3.9) is to be solved numerically. 

When reactions with neutral molecules are taken into account, a considerable displacement 
of point y,, into the,region of lower temperatures take place. 

As an example, let us consider the simplest model with exponential gas temperature distri- 
bution 

0 =I _t (Bc - l)e_Q 

We assume that charged and neutral particles interact as Maxwellian molecules /4/, then 
nD - T and a=@, if k,l - T-'Ia then 6 _ o-"'". On these assumptions we have 

cz = ,,,lr, (1 - 0) 0’” p(1-w (If’) 
The curve of a(@calculated by this formula for m -=9.:~,x~-lO-~ is plotted in Fig.1, where 

point CL= 1 corresponds to 6 equal 0.411. In the considered model with exponential gas 
temperature distribution the quantity T,, is independent of the wall temperature and for 
T,=2700% is equal ill&, while the temperature calculated for the same determining para- 
meters‘using the formulas in /l/ is 163flK. 

In the case of the hot wall the formulas obtained here are in agreement with the 
respective formulas in /l/, while in the case of the cold wall they differ. 
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